Exercise 22

(a) Find all points $\mathbf{p} \in \mathbb{R}^{3}$ that have the same representation in both Cartesian and spherical coordinates.
(b) Find all points $\mathbf{p} \in \mathbb{R}^{3}$ that have the same representation in both Cartesian and cylindrical coordinates.

Solution

Part (a)
The transformation from Cartesian coordinates to spherical coordinates $(\rho, \theta, \phi), \phi$ being the angle from the polar axis, is

$$
\begin{aligned}
x & =\rho \sin \phi \cos \theta \\
y & =\rho \sin \phi \sin \theta \\
z & =\rho \cos \phi .
\end{aligned}
$$

The points in \mathbb{R}^{3} that have the same representation in both Cartesian and spherical coordinates satisfy $(x, y, z)=(\rho, \theta, \phi)$, that is,

$$
\begin{align*}
& \rho=\rho \sin \phi \cos \theta \tag{1}\\
& \theta=\rho \sin \phi \sin \theta \tag{2}\\
& \phi=\rho \cos \phi . \tag{3}
\end{align*}
$$

Solve the first equation for ρ.

$$
\begin{gathered}
\rho-\rho \sin \phi \cos \theta=0 \\
\rho(1-\sin \phi \cos \theta)=0 \\
\rho=0 \quad \text { or } \quad 1-\sin \phi \cos \theta=0
\end{gathered}
$$

If $\rho=0$, then equations (1), (2), and (3) imply that $\theta=0$ and $\phi=0$ as well. Therefore, the origin $(0,0,0)$ is a point that has the same representation in both Cartesian and spherical coordinates. Only one value of ϕ and one value of θ satisfy the second equation.

$$
1-\sin \phi \cos \theta=0 \Rightarrow\left\{\begin{array}{l}
\phi=\frac{\pi}{2} \\
\theta=0
\end{array}\right.
$$

This value of ϕ doesn't satisfy equation (3), though, so there are no other points.

Part (b)

The transformation from Cartesian coordinates to cylindrical coordinates (r, θ, z) is

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& z=z .
\end{aligned}
$$

The points in \mathbb{R}^{3} that have the same representation in both Cartesian and spherical coordinates satisfy $(x, y, z)=(r, \theta, z)$, that is,

$$
\begin{align*}
& r=r \cos \theta \tag{4}\\
& \theta=r \sin \theta \tag{5}\\
& z=z . \tag{6}
\end{align*}
$$

Solve the first equation for r.

$$
\begin{gathered}
r-r \cos \theta=0 \\
r(1-\cos \theta)=0 \\
r=0 \quad \text { or } \quad 1-\cos \theta=0
\end{gathered}
$$

If $r=0$, then equation (5) implies that $\theta=0$ as well. Therefore, every point on the z-axis $(0,0, z)$ is a point that has the same representation in both Cartesian and cylindrical coordinates. Only one value of θ satisfies the second equation.

$$
1-\cos \theta=0 \quad \Rightarrow \quad \theta=0
$$

$\theta=0$ automatically satisfies equations (4) and (5); r and z remain arbitrary. Therefore, every point in the $\theta=0$ plane illustrated below has the same representation in both Cartesian and cylindrical coordinates.

